Connect with us

Science & Tech

There’s a Gigantic Mystery Hidden Inside Every Single Atom in the Universe

Nobody really knows what happens inside an atom.



Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

(TMU) — Science has come a long way in the past few years. I still remember when the “Particle of God”, Higgs boson, was just a dream that needed to be confirmed after physicist Peter Higgs theorized its existence. In December 2013, after a lot of work done on the LHC built by CERN, Higgs’ theory was confirmed and he was warded with with the Nobel prize.

We have also learned more about subatomic particles recently, such as the two main types that exist: elementary and composite. Thirty-six fundamental particles, including antiparticles (same mass than the original but opposite physical charge; e.g electron-antielectron), exist. Twelve of these are force-carrying particles, and the other 24 are called “matter particles” and only interact with each other indirectly via the force carriers.

But it is still a mystery for scientists what really happens inside an atom. A healthy competition is being held regarding this: two groups of scientists presume they have the key to solving the mystery and both teams are working to prove their own vision is correct.

An atom is the smallest unit of ordinary matter that constitutes a chemical element, and every state of matter is composed of atoms. Electrons whiz around orbitals in an atom’s outer shell. There is a lot of empty space as well as a tiny nucleus, which provides most of the atom’s mass.

We have four fundamental forces working in the universe:

  • Gravity
  • Weak force
  • Electromagnetism
  • Strong force

The strong force is the one bonding together the protons and neutrons inside the atom.

No one knows yet how these protons and neutrons behave inside an atom. Outside an atom, the nucleons (protons and neutrons together) have defined sizes and shapes. Each of them is made up of three smaller particles called quarks. The interactions between these quarks are so intense that no external force should be able to deform them. Scientists have known for many years that the theory now accepted of the atom is not quite correct because inside a nucleus, protons, and neutrons appear much larger than they should be.

Nucleons moving in little orbitals within the nucleus have very little energy, they are restrained by the strong force. In 1983, physicists from CERN noticed something strange: Beams of electrons bounced off iron in a way that was really different from how they bounced off free protons. Gerald Miller, a nuclear physicist at the University of Washington, told Live Science that that was unexpected because if the protons inside hydrogen were the same size as the protons inside iron, the electrons should have bounced off in much the same way.

Scientists came to believe it was a size issue. Researchers created a name for this phenomenon, the EMC effect, after the European Muon Collaboration.

Or Hen, a nuclear physicist at MIT, said that while quarks strongly interact within a given proton or neutron, quarks in different protons and neutrons can’t interact much with each other. The strong force inside a nucleon is so strong it eclipses the strong force holding nucleons to other nucleons.

“Imagine sitting in your room talking to two of your friends with the windows closed,” Hen said. The trio are three quarks inside a neutron or proton. “A light breeze is blowing outside,” he said.

That light breeze is the force holding the proton or neutron to nearby nucleons “outside” the window. Hen also said that experiments have shown that at any given time, about 20% of the nucleons in a nucleus are in fact outside their orbitals and instead they’re paired off with other nucleons. Due to these circumstances, the interactions between the nucleons are much higher-energy than usual. These interactions break down the walls separating quarks inside individual protons or neutrons.

The quarks making up one proton and the other quarks involved with the other proton start to occupy the same space, this causes the protons to stretch and blur, Hen said. After this, they grow a lot, but for very shorts periods of time. This produces the EMC effect previously mentioned.

Most physicists now accept this interpretation of the EMC effect but not everyone thinks this is how you would solve this problem. Ian Cloët, a nuclear physicist at Argonne National Laboratory in Illinois, said he thinks Hen’s work draws conclusions that the data doesn’t fully support.

“I think the EMC effect is still unresolved,” Cloët told Live Science. “If you use that model to try and look at the EMC effect, you will not describe the EMC effect. There is no successful explanation of the EMC effect using that framework. So in my opinion, there’s still a mystery.”

“What is clear is that the traditional model of nuclear physics … cannot explain this EMC effect,” he said.

QCD stands for quantum chromodynamics, the system of rules that govern the behavior of quarks. “We now think that the explanation must be coming from QCD itself,” Cloët also said. Nuclear physics would be ancient “technology” compared to quantum chromodynamics, but it also needs a lot more work to build.

The problem is that the complete QCD equations describing all the quarks in a nucleus are too difficult to solve, Cloët and Hen both said.

Modern supercomputers are about 100 years away from being fast enough for the task, Cloët estimated. And even if supercomputers were fast enough today, the equations haven’t advanced to the point where you could plug them into a computer, he said. )You can read more about the latest breakthroughs in quantum technology here.)

That suggests we need a different model, Cloët also said.

“The picture that I have is, we know that inside a nucleus are these very strong nuclear forces,” Cloët said. These are “a bit like electromagnetic fields, except they’re strong force fields.”

Clöet calls these force fields “mean fields” which actually deform the internal structure of protons, neutrons, and pions.

“Just like if you take an atom and you put it inside a strong magnetic field, you will change the internal structure of that atom,” Cloët said.

Scientists who support the mean-field theory think the sealed-up room Hen described has holes in its walls, with wind is blowing through that causes the quarks to stretch out.

In the end, researchers emphasized that the debate is friendly.

“It’s great, because it means we’re still making progress,” Miller said. “Eventually, something’s going to be in the textbook and the ball game is over. … The fact that there are two competing ideas means that it’s exciting and vibrant. And now finally we have the experimental tools to resolve these issues.”

By Manuel García Aguilar  | Creative Commons |

Typos, corrections and/or news tips? Email us at [email protected]


Chinese Military Satellite Smashed by Russian Rocket in “Major Confirmed Orbital Collision”



Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

In an incident that is likely illustrative of things to come, Chinese military satellite 1-02 was smashed after it appears to have collided into the debris from a disintegrating Russian rocket.

The collision, which occurred earlier this year, shows the increasing danger of space junk such as satellite parts and other miscellaneous jetsam littering the Earth’s orbit. An estimated 8,000 metric tons of space debris pose the risk of destroying functional equipment such as weather forecasting systems, telecoms and GPS systems – and even manned space travel missions – if the problem isn’t reined in.

The fate of the Chinese satellite was uncovered by Harvard astrophysicist and satellite tracker Jonathan McDowell.

The breakup of Yunhai 1-02 was initially reported by the U.S. Space Force’s 18th Space Control Squadron (18SPCS). However, it wasn’t until recently that McDowell found out what caused the breakup.

The astrophysicist soon found that it was destroyed by space junk that originated from a Russian Zenit-2 rocket that had launched a spy satellite in 1996. On Aug. 14, McDowell found a strange entry in a database on “Collided with satellite.”

 “This is a new kind of comment entry — haven’t seen such a comment for any other satellites before,” McDowell tweeted.

“A quick analysis of the TLEs show that Yunhai 1-02 (44547) and [the debris object] passed within 1 km of each other (so within the uncertainty of the TLEs) at 0741 UTC Mar 18, exactly when 18SPCS reports Yunhai broke up,” he added, noting that this “looks to be the first major confirmed orbital collision in a decade.”

However, the Yunhai satellite still remains functional and is transmitting radio signals, notes

The incident shows the growing likelihood of such collisions in the high-traffic, littered near-Earth orbital zone.

“Collisions are proportional to the square of the number of things in orbit,” McDowell explained. “That is to say, if you have 10 times as many satellites, you’re going to get 100 times as many collisions.”

He added: “So, as the traffic density goes up, collisions are going to go from being a minor constituent of the space junk problem to being the major constituent. That’s just math.”

A worst-case scenario of such collisions is known as the “Kessler Syndrome,” and describes the possibility of one collision setting in motion a chain of collisions. Such a disaster was the premise of the 2013 film “Gravity.”

One hopes that things don’t reach that point.

In the meantime, however, there have been a number of initiatives meant to tackle the growing problem of space debris, such as the ELSA-d spacecraft launched in a demonstration mission earlier this year.

Typos, corrections and/or news tips? Email us at [email protected]

Continue Reading


Boston Dynamics Drops New Video Of 5-Foot Atlas Humanoid Robot Effortlessly Doing Parkour



Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

Robot maker Boston Dynamics has released new video of its two-legged Atlas robot effortlessly completing a parkour obstacle course, offering a new display of its humanoid machines’ unsettling repertoire.

In the video, a pair of Atlas robots can be seen leaping over large gaps, vaulting beams, and even performing backflips. The robot can even be seen jumping over a board while using its arm to remain steady.

While the display seems like anything but “free” running – as the original developers of parkour had envisioned – the routine does seem like an impressive, if terrifying, display of effective coding that took months to perfect, according to the Hyundai-owned robotics firm.

“It’s not the robot just magically deciding to do parkour, it’s kind of a choreographed routine, much like a skateboard video or a parkour video,” said Atlas control lead Benjamin Stephens.

See for yourself:

Unlike its robotic dog Spot, which controversially hit New York City streets last year before being pulled, Atlas isn’t a production robot. Instead, it’s a research model meant to see how far the limits of robotics can be pushed.

In the past, Boston Dynamics has displayed the robot’s feats with videos of Atlas jogging and even busting out some cool dance moves.

Team lead Scott Kuindersma said in a statement that in about two decades, we can expect to coexist with robots that move “with grace, reliability, and work alongside humans to enrich our lives.”

Until then, some of us will continue to reserve our right to feel a bit queasy about the prospect of people being chased down by these skilled free-running (and dancing) machines.

Typos, corrections and/or news tips? Email us at [email protected]

Continue Reading


South Korean Toilet Turns Poo Into Green Energy and Pays Its Users Digital Cash



Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

What if your morning #2 not only powered your stove to cook your eggs, but also allowed you to pay for your coffee and pastry on the way to class?

It seems like an absurd question, but one university in South Korea has invented a toilet that allows human excrement to not only be used for clean power, but also dumps a bit of digital currency into your wallet that can be exchanged for some fruit or cup noodles at the campus canteen, reports Reuters.

The BeeVi toilet – short for Bee-Vision – was designed by urban and environmental engineering professor Cho Jae-weon of the Ulsan National Institute of Science and Technology (UNIST), and is meant to not only save resources but also reward students for their feces.

The toilet is designed to first deliver your excrement into a special underground tank, reducing water use, before microorganisms break the waste down into methane, a clean source of energy that can power the numerous appliances that dorm life requires.

“If we think out of the box, feces has precious value to make energy and manure,” Cho explained. “I have put this value into ecological circulation.”

The toilet can transform approximately a pound of solid human waste – roughly the average amount people poop per day – into some 50 liters of methane gas, said Cho. That’s about enough to generate half a kilowatt hour of electricity, enough to transport a student throughout campus for some of their school day.

Cho has even devised a special virtual currency for the BeeVi toilet called Ggool, or honey in Korean. Users of the toilet can expect to earn 10 Ggool per day, covering some of the many expenses students rack up on campus every day.

Students have given the new system glowing reviews, and don’t even mind discussing their bodily functions at lunchtime – even expressing their hopes to use their fecal credits to purchase books.

Typos, corrections and/or news tips? Email us at [email protected]

Continue Reading


The Mind Unleashed