Connect with us

Science & Tech

New System Allows Someone to Eavesdrop Using a Potato Chip Bag

Avatar

Published

on

Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

Researchers from MIT, Microsoft, and Adobe collaborated to develop a “visual microphone”, which reconstructs the sounds heard in the room by measuring the vibrations caused by sounds in everyday objects.

In one of the experiments, the system recovered intelligible human speech from the vibrations of a potato chip bag filmed from five feet away through soundproof glass. It also managed to reconstruct clear sounds from a sheet of aluminum foil, the surface of a glass of water, and even from the leaves of a potted plant.

When sound hits an object, it causes the object to vibrate,” says Abe Davis, a graduate student at MIT and a member of the research team. “The motion of this vibration creates a very subtle visual signal that’s usually invisible to the naked eye. People didn’t realize that this information was there.

The researchers developed an algorithm that analyzes images of objects captured on video. The software analyzes the images frame by frame and measures tiny fluctuations, such as changes in the color of each pixel. Based on these changes, the system analyzes the movements of an object as it vibrates slightly under the influence of sound waves.

eavesdrop

Even using the images from an ordinary camera, which captures up to 60 frames per second, the algorithm can reconstruct the sounds accurately enough to reveal basic information, such as the number and gender of speakers.

The performance increases dramatically as the sampling rate, i.e. the number of frames recorded per second (fps), rises. In some of their experiments, the researchers used high-speed camera operating at 2-6000 fps.

The vibrations analyzed by the algorithm are actually invisible to the eye as their amplitude is around ten micrometers (thousandths of a millimeter). Even in an image taken from very close, a distance of 10 microns corresponds to much less than one pixel.

The technical details of the algorithm will be presented at the Siggraph conference. With regard to practical applications that the technique could have, the researchers admit that the first thing that comes to mind is… spying.

However, they have some other suggestions for the practical use of the algorithm. “We’re recovering sounds from objects. That gives us a lot of information about the sound that’s going on around the object, but it also gives us a lot of information about the object itself, because different objects are going to respond to sound in different ways,” says Davis.

ABOUT THE AUTHOR

Anna LeMind is the owner and lead editor of the website Learning-mind.com, and a staff writer for The Mind Unleashed.

News

In Major First, New System Lets Paralyzed Users Control Tablet Computer Wirelessly

Elias Marat

Published

on

Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

In what could be a major breakthrough for people suffering paralysis and other permanent disabilities, the first wireless command to a computer has been demonstrated.

According to a new study published in IEEE Transactions on Biomedical Engineering, scientists at Brown University say that the new system called BrainGate can transmit brain signals at “single-neuron resolution and in full broadband fidelity.”

BrainGate clinical trial participants with paralysis used a small transmitter connected to a person’s brain motor cortex to manipulate the interface of a tablet computer.

Participants were able to achieve the same typing speeds and point-and-click accuracy on the BrainGate system as they could with wired systems.

“We’ve demonstrated that this wireless system is functionally equivalent to the wired systems that have been the gold standard,” said John Simeral, an assistant professor of engineering at Brown University.

“The signals are recorded and transmitted with appropriately similar fidelity, which means we can use the same decoding algorithms we used with wired equipment,” Simeral said.

Top of Form

 Bottom of Form

“The only difference is that people no longer need to be physically tethered to our equipment, which opens up new possibilities in terms of how the system can be used,” he added.

Neural interface technologies have attracted such high-profile figures as Elon Musk and social media titan Facebook in recent years.

“With this system, we’re able to look at brain activity, at home, over long periods in a way that was nearly impossible before,” said Brown University engineering professor and clinical trial leader Leigh Hochberg.

“This will help us to design decoding algorithms that provide for the seamless, intuitive, reliable restoration of communication and mobility for people with paralysis,” Hochberg added.

Continue Reading

News

Scientists Discover X-Rays Coming From Uranus For Very First Time

Elias Marat

Published

on

Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

Scientists are seeing X-rays being emitted from Uranus for the very first time, according to new research.

On Wednesday, the study was published in the Journal of Geophysical Research that lays out how a comparison of two images of the planet taken by the Chandra Observatory in 2002 and 2017 show a clear detection of X-rays in the first image, while the second shows a possible flare of X-rays on the enigmatic and icy planet.

According to NASA, the reason for these X-rays is “mainly the sun.”

However, “there are tantalizing hints that at least one other source of X-rays is present,” the space agency noted.

“One possibility is that the rings of Uranus are producing X-rays themselves, which is the case for Saturn’s rings,” NASA said. “Another possibility is that at least some of the X-rays come from auroras on Uranus, a phenomenon that has previously been observed on this planet at other wavelengths.”

X-rays can be provide a crucial window into the processes and characteristics of our universe. In the case of Uranus, these characteristics can include “atmospheric, surface and planetary ring composition.”

And while X-ray lights given off by the sun have been previously observed by astronomers on Jupiter and Saturn, this hasn’t been the case for icy giants like Uranus and Neptune.

The agency hopes that by figuring out the origin of the X-rays observed at Uranus, researchers can better grasp how mysterious objects including black holes and neutron stars emit X-rays.

Uranus is roughly four times the diameter of Earth and is the seventh planet from the sun, and is known for its distinct pair of rings around its equator and its unique side rotation.

Continue Reading

News

Breathtaking New Image of Black Hole Reveals Ultrapowerful Magnetic Fields

Elias Marat

Published

on

Like this article? Get the latest from The Mind Unleashed in your inbox. Sign up right here.

Two years after the first-ever image of a black hole was produced, an international team of scientists have released an updated view of the magnetic fields surrounding it, saying that the groundbreaking new development allows us to understand the Messier 87 (M87) galaxy’s ability to “launch energetic jets from its core.”

In a press release, the Event Horizon Telescope (EHT) said that over 300 researchers collaborated on the project and the  findings were published Wednesday in two separate papers in The Astrophysical Journal.

In April 2019, scientists from EHT captured the world’s attention by releasing an image of the supermassive black hole lying at the center of M87, which is located 55 million light-years away from Earth.

The striking image showed a dark central region outlined by a ring-like structure, which scientists described at the time as “emission from hot gas swirling around it under the influence of strong gravity near its event horizon.” In the new image captured through polarized light, brightly colored streaks of light can be seen corresponding with its magnetic field.

“We are now seeing the next crucial piece of evidence to understand how magnetic fields behave around black holes, and how activity in this very compact region of space can drive powerful jets that extend far beyond the galaxy,” said Monika Mościbrodzka, coordinator of the EHT Polarimetry Working Group and a professor at Radboud Universiteit in the Netherlands.

The new observations, which are based on data collected by EHT researchers, should provide crucial insights on how a galaxy can project streams of energy thousands of light-years outward from its core.

Continue Reading

Trending